Flow-optimized Cooperative Transmission for the Relay Channel

نویسندگان

  • Tan F. Wong
  • Tat-Ming Lok
  • John M. Shea
چکیده

This paper describes an approach for half-duplex cooperative transmission to achieve cooperative diversity in a classical three-node relay channel. Assuming availability of channel state information at the source and relay, the approach makes use of this information to optimize distinct flows through the direct link from the source to the destination and the path via the relay, respectively. It is shown that such a design can effectively obtain diversity advantage of the relay channel in both high-rate and low-rate scenarios. When the rate requirement is low, the proposed design gives a second-order outage diversity performance approaching that of full-duplex relaying. When the rate requirement becomes asymptotically large, the design still gives a close-to-second-order outage diversity performance. The design also achieves the best diversity-multiplexing tradeoff possible for the relay channel. This research is supported in part by the National Science Foundation under Grant CNS-0626863.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power Allocation In Cooperative Relay Channels

This paper concerns power allocation in relay-assisted wireless channels for two-hop transmission. First, the transmitter sends the information to both the relay and receiver parts. Next, in the second hop, the transmitter cooperates with the relay to increase the received signal to noise ratio (SNR), assuming the relay makes use of the Amplify and Forward (AF) strategy. Moreover, it is assumed...

متن کامل

Performance Analysis of cooperative SWIPT System: Intelligent Reflecting Surface versus Decode-and-Forward

In this paper, we explore the impacts of utilizing intelligent reflecting surfaces (IRS) in a power-splitting based simultaneous wireless information and power transfer (PS-SWIPT) system and compare its performance with the traditional decode and forward relaying system. To analyze a more practical system, it is also assumed that the receiving nodes are subject to decoding cost, and they are on...

متن کامل

Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel

In this paper, a cooperative algorithm to improve the orthogonal space-timefrequency block codes (OSTFBC) in frequency selective channels for 2*1, 2*2, 4*1, 4*2 MIMO-OFDM systems, is presented. The algorithm of three node, a source node, a relay node and a destination node is formed, and is implemented in two stages. During the first stage, the destination and the relay antennas receive the sym...

متن کامل

Optimal Power Management to Minimize SER in Amplify and-Forward Relay Networks

This paper studies optimal power allocation to minimize symbol error rate (SER) of amplify-and-forward cooperative diversity networks. First, we analytically solve optimal power allocation problem to minimize SER for three different scenarios, namely, multi-branch single-relay, single-branch multi-relay and multi-branch multi-relay cooperative diversity networks, all subject to a given total re...

متن کامل

Sum-Rate Maximization Based on Power Constraints for Cooperative AF Relay Networks

In this paper, our objective is maximizing total sum-rate subject to power constraints on total relay transmit power or individual relay powers, for amplify-and-forward single-antenna relay-based wireless communication networks. We derive a closed-form solution for the total power constraint optimization problem and show that the individual relay power constraints optimization problem is a quad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/cs/0701019  شماره 

صفحات  -

تاریخ انتشار 2007